Fractal Dimensions and Von Neumann Algebras

نویسنده

  • KENLEY JUNG
چکیده

Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropy for finite sets of self-adjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebraic invariant. We compute the free Hausdorff dimension in the cases where the set generates a finite dimensional algebra or where the set consists of a single self-adjoint whose associated measure has diffuse part absolutely continuous with respect to Lebesgue measure. We show that the free Hausdorff dimension becomes additive for such sets in the presence of freeness. For Bill Arveson

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

Embedding Dimensions of Finite von Neumann Algebras

We introduce “embedding dimensions” of a family of generators of a finite von Neumann algebra when the von Neumann algebra can be faithfully embedded into the ultrapower of the hyperfinite II1 factor. These embedding dimensions are von Neumann algebra invariants, i.e., do not depend on the choices of the generators. We also find values of these invariants for some specific von Neumann algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002